Step of Proof: choicef_wf
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
choicef
wf
:
xm
:XM,
T
:Type,
P
:(
T
). (
a
:
T
.
P
(
a
))
((
x
:
T
.
P
(
x
))
T
)
latex
by ((((((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
)
CollapseTHEN (Unfold `choicef` 0))
)
CollapseTHEN (
C
RepUnfolds ``xmiddle decidable`` 1))
latex
C
1
:
C1:
1.
xm
:
P
:
.
P
(
P
)
C1:
2.
T
: Type
C1:
3.
P
:
T
C1:
4.
a
:
T
.
P
(
a
)
C1:
case
xm
({
y
:
T
|
P
(
y
)} ) of inl(
z
) =>
z
| inr(
w
) => "???"
T
C
.
Definitions
x
:
T
.
P
(
x
)
,
t
T
,
x
(
s
)
,
x
:
A
.
B
(
x
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
Dec(
P
)
,
XM
Lemmas
xmiddle
wf
origin